
Worth the Wait? Time Window Feature
Optimization for Attack Classification

Casey Wilson
Department of Cyber

and Computer Sciences
The Citadel

Charleston, SC, USA
Email: cwilso20@citadel.edu

Xenia Mountrouidou
Department of Computer Science

College of Charleston
Charleston, SC, USA

Email: mountrouidoux@cofc.edu

Anna Little
Department of Computational Mathematics

Michigan State University
Lansing, MI, USA

Email: littl119@msu.edu

Abstract—Time as a variable for generating features has been
widely overlooked in Intrusion Detection System (IDS) research.
Computer and network attacks are time series, where time is
an important factor that may affect feature generation, and
as a result, classification. Nevertheless, there has been little
exploration on how to calibrate time for IDSs and attack
classification techniques. In this paper we explore time windows
as a technique for generating more effective and descriptive
features for attack classification. We suggest a framework for
feature generation and selection that uses Recursive Feature
Elimination (RFE) and time window exploration. Our initial
results when applying this framework indicate that there is up
to 47% improvement of F1 scores in attack classification when
attack features are generated over a variety of time windows,
compared to a single, global time window. We find that features
calculated over longer lengths of time may be more useful for
detecting attacks than over shorter lengths of time. Our methods
seem to be most effective at detecting DDoS attacks, particularly
those that occur over medium or long durations of time.

Index Terms—Feature Selection; Attack Classification; Intru-
sion Detection;

I. INTRODUCTION

Cyber attack classification is a widely known cyber defense
problem [1]. It involves using network and host data to auto-
mate attack recognition, with the ultimate goal of deploying a
targeted defense mechanism. As networks and hosts become
more diverse, with Internet of Things (IoT) devices changing
the landscape for computer networks, the problem of attack
classification is also diversifying. IoT worms such as the
Mirai malware [2] are undetected by traditional monitoring
systems and can disrupt network functionality and have a large
financial impact to business operations [3]. Persistent attacks,
such as the Office of Personnel Management (OPM) Advanced
Persistent Threat (APT) [4] require a change in thinking about
the time frame of observations and data gathering. Thus, time
is an important factor to consider when tackling the problem
of attack classification.

Intrusion Detection Systems (IDSs) offer a widely accepted
solution to the attack detection and classification problem [5].
Whether an IDS monitors the host (HIDS) or the network

(NIDS), the goal is to raise an alert specifying the type of
attack that is observed. A signature-based IDS [6] relies on
a database of known attacks and their characteristics, while a
behavior based IDS [7] relies on known behaviors. To classify
attacks accurately, IDSs often rely on specific, well-known
attack characteristics, i.e., features.

As attacks and network infrastructures increase their vari-
ability, the number of available features also increases, with
hundreds of features that are good candidates for attack
classification. It is generally desirable to restrict to a small
set of informative features; this reduces the computational
time of Machine Learning (ML) algorithms used for attack
classification [8], results in more interpretable models, and
avoids overfitting and retaining redundant features [9]. How-
ever, the success of the ML algorithm is highly dependent on
the feature selection process, i.e., the combination of features
used in the classification algorithm [10]. Trying every possible
combination of features is not computationally tractable [11],
and feature selection is often done with a greedy algorithm
which iteratively adds or eliminates features [10]. Developing
strategies to find useful feature combinations remains an
ongoing research problem.

Even though analyzing data over multiple time windows
is considered critical in other domains, this method is often
overlooked in the cybersecurity domain, where the focus
is to find the best combination of features over a global
time window [12], [13]. For example, in signal processing
[14], multi-scale features are created by analyzing a signal
over various time windows; in agent based systems, features
computed on micro time scales can be used to predict behavior
on macro time scales [15], [16]; in recurrent neural networks
[17], [18], short and long term history are integrated to define
the most relevant output. In contrast, this is a less common
consideration for attack classification.

A feature calculated over a shorter time window generally
provides a smaller traffic sample size, making confident classi-
fication of anomalous behavior more challenging than it might
be over a larger window with a larger sample size. Contrarily,
an entire attack could also take place over a short period of
time, rendering a large time window feature calculated from
mostly irrelevant traffic data expendable. This suggests that978-1-7281-0858-2/19/$31.00 ©2019 IEEE

the optimal time window for feature calculation varies greatly
depending on attack type.

Another consideration is that time window calculations slow
down the speed of real-time classification; if a feature is
calculated over a ten minute time-window, this feature’s value
cannot be determined until the entire time window has passed.
This means a classifier could not use this feature until ten
minutes after some of the relevant network traffic arrived. In
addition, the size of the attack may affect the optimal time
window for feature calculation. In this paper, we explore these
widely unanswered questions.

We propose a solution to these problems based on feature
extraction and selection, where features are defined from a
constantly sliding time window. We vary the size of the time
window, thus creating multiple versions of the same feature,
where each version uses the same formula for calculation
over a different length of time. Each version of a feature
corresponds to a new unique feature defined by the length
of time that it was calculated over. This allows us to employ
standard feature selection techniques to select for the optimal
time windows of certain features. We focus on the following
guiding questions:

• What is the most appropriate combination of features and
time windows to classify a specific type of attack?

• How does a time window affect the correctness of attack
classification?

• Should we use a global time window or feature specific
time windows when calculating features?

To our knowledge, the questions above are widely unanswered
in the related literature.

Our contributions are listed below:

1) A recursive feature elimination algorithm to select a
feature vector with varying time windows for a specific
type of attack,

2) Initial results that demonstrate how time windows affect
attack signature calculations and, as a result, classifica-
tion accuracy.

It is important to note that the intention of this work is not
to create a standalone IDS; some attacks do not have obvious
time-based signatures and are ill-suited to classification based
purely on time series features. Rather, the insights gained in
this paper are intended to be used alongside traditional IDS
techniques for an added layer of security against attacks that
are well-defined by their time-based signatures. This research
illustrates that the specific time windows chosen to be used
with an IDS are important, and when IDSs use time-based
features, time window optimization should be treated with the
same significance as standard feature set optimization. The
insights gained are valuable, for example, in the design of deep
learning architectures in cybersecurity [19]. The performance
of neural networks is highly dependent on selecting an ap-
propriate architecture [20], and knowledge of the natural time
scales associated with specific features and attacks enables the
selection of a strategic architecture.

This paper is organized as follows. In Section II we present
a novel framework for feature creation and selection used in
attack classification. In Section III we present initial results
on how feature selection and time window calculations affect
classification accuracy. We discuss the results and limitations
of our framework in Section IV. Related work on feature
selection and attack classification is listed in Section V. We
discuss our future work and conclusions in Section VI.

II. FEATURE SELECTION FRAMEWORK

The proposed framework of feature selection and creation
that consists of three stages is shown in Figure 1. Below
we explain the input and output of each stage as well as its
operation:

• Generate Feature Tables: A generic network packet cap-
ture dataset with labeled packets that has duration D secs
is used as an input in this stage. Then N pre-calculated
feature matrices of size M × D are generated, where
N is the number of features and M is the number of
different time windows that are explored. The number of
rows in those matrices is equal to the times that we can
calculate the feature based on Stride = 1 sec, thus the
rows are equal to D

Stride . We define the variable Stride
as the number of seconds forward that the sliding time
window moves for each iteration of feature calculation.
The vector of M time windows is an input variable that
can be defined by the business goals, i.e., performance
vs. accuracy. For example, a business that is interested
in detecting long duration persistent threats may choose
time windows that span to several days. Note that all these
arguments can change to accommodate different datasets
and time window requirements.

• RFE Stage 1: Feature Selection: RFE Stage 1 seeks to
find the optimal combination of features for Decision Tree
(DT) using the F1 score as the ranking metric and all M
features calculated during a single time window. The F1
score is defined as the harmonic mean of precision and
recall F1 = 2 × Precision×Recall

Precision+Recall , where Precision =
TP

TP+FP , Recall = TP
TP+FN , TP is the number of true

positives, FP is the number of false positives, and FN is
the number of false negatives. The output of RFE Stage
1 is a maxFeatures1-feature subset with the highest F1
score using RFE, where maxFeatures1 is a predefined
constant. That is because when M different time windows
are used to generate M × maxFeatures1 features for
RFE Stage 2, the cardinalities of the feature subsets of
RFE Stage 2 will be the same for all attack types, barring
the removal of any ”dirty” feature vectors, such as those
with a high number of undefined values.

• RFE Stage 2: Window Optimization: The top
maxFeatures1 features from RFE Stage 1 are
calculated over M distinct time windows, creating a
starting feature set with M × maxFeatures1 unique
features. RFE is repeated on this new feature set, again
using DT as the ML algorithm and F1 as the ranking
score. The feature subset with the highest F1 score

Fig. 1: Feature Selection Algorithm.

and cardinality of maxFeatures2 or less is chosen
as the optimal time window feature subset, where
maxFeatures2 is another predefined constant. This
optimal time window feature subset is the output of
the feature extraction and selection process, and will
be used as the feature set to evaluate the fitted model’s
classification success on the test part of the dataset.

In the remainder of this section, we first present the prepro-
cessing for the generation of time-based features. Secondly,
we discuss the implementation details of RFE Stages 1 and 2
and give the RFE Algorithm pseudocode for our framework.

A. Feature Generation

The first stage of our feature selection process consists of
generating features based on different time window durations.
We chose the set of features based on simplicity, speed of
calculation, prior research, and domain expertise. We present
these features and dataset details in Section III. Note that any
generic set of features, discrete or continuous, can be used
with our framework.

We consider every time window generated for
a feature as a distinct feature itself. Thus fi,twj

is defined as feature i calculated during time
window twj , where j ∈ {1, 2, 4, 8, 16, 32, 60} in our
implementation of the framework. For example, for
SYNCount, there would be seven distinct features,
(SY NCount1, SY NCount2, ..., SY NCount60), where
the subscript signifies the length of the time window, ending
at the current second, used to calculate the feature.
Stride is the number of seconds the sliding window moves

forward for each feature calculation. Since we calculate the
features at each second, this corresponds to a stride with
a constant size of Stride = 1 sec. This implies that each
individual second of the duration of the dataset is a sample.

The general complexity of generating features depends on
the number of time windows and set of features. The upper
bound for the formula is O(N ×M × D

Stride) , where N is
the total number of distinct features, M is the number of time
windows, and since we use a Stride = 1 sec, we calculate
each feature at D points in time.

We note that both the size of the time window and the
stride affect the quality of information provided by a feature.
In this paper, we do not attempt to optimize stride. Instead we
focus on the time window size and how its effects may vary
depending on different attack lengths and categories.

B. Recursive Feature Elimination Algorithm

Algorithm 1 Recursive Feature Elimination Algorithm
Input: FeatureVector (full set), GroundTruth, numFolds,
maxFeatures
Output: ReducedFeatureVector (reduced feature set associated
with highest F1 score)

1: procedure RFE(FeatureVector, GroundTruth, numFolds)
2: if cardinality[FeatureV ector] <= maxFeatures

then
3: % return FeatureVector corresponding to best F1

score
4: % across iterations
5: return ReducedFeatureVector = FeatureVector
6: end if
7: F1Scores = [] %initialize empty list
8: for missingFeature in FeatureVector do
9: tempVector = FeatureVector - missingFeature

10: predictions = [] %predicted values from cross-
validation

11: for training, test in length(numFolds) do
12: dt = DecisionTree.fit(tempVector,

GroundTruth)
13: foldPredictions = dt.predict(tempVector)
14: predictions.append(foldPredictions)
15: end for
16: % Get F1 score for current feature set:
17: currentF1 = CalcF1(predictions, GroundTruth)
18: F1Scores.append([currentF1, missingFeature])
19: end for
20: F1Scores.sortAscending
21: FeatureVector.remove(worstFeature)
22: % Store feature set associated with highest score:
23: writeToFile(bestF1, FeatureVector)
24: % recursion
25: RFE(FeatureVector, GroundTruth, numFolds)
26: end procedure

Our methodology for feature selection is based on two
stages of Recursive Feature Elimination (RFE), a wrapper
method of feature selection. Wrapper methods use the ML
algorithm itself to find optimal feature subsets, treating the
ML algorithm as a black box, where the features are selected
based on the ML algorithm performance that relies on some

metric, such as accuracy or F1 score. With these methods, the
optimal feature sets are those which have optimal scores of a
performance metric [10]. Thus, a wrapper algorithm first uses a
subset of features to train the model, measures the performance
of the model, adds or removes features from the subset, and
iteratively or recursively repeats this process.

Using RFE requires a supervised learning algorithm which
can quantify the importance of each feature by ranking feature
subsets based on evaluation metric scores. RFE is a recursive
process of multiple rounds where at each round the least useful
feature is removed from the current feature set. Within each
round, for each distinct feature fi in the starting feature subset
{f1, f2, ..., fN}, RFE fits a model feature set without feature
fi and evaluates this model with test data. The feature subset
with the highest score is the feature set used as the input to the
next round. After the least useful feature is eliminated, a new
model is fit with the reduced feature set, and the usefulness of
each remaining feature is reassessed using the same process.
The outputs of each round are recorded until there are no
features left or some other criteria is specified for the algorithm
to halt, such as the maxFeatures. Algorithm 1 presents
the pseudocode of the RFE procedure that we implemented
[21]. Note that any machine learning algorithm may substitute
the decision tree and any number of maxFeatures can be
selected based on efficiency versus accuracy criteria.

We have chosen to use two RFE stages after regarding
runtime performance considerations. RFE requires approxi-
mately O(12×N2) number of ML algorithm runs, where N =
SizeofFeatureSet × NumberOfT imeWindows. Since a
single ML run can take substantial time, we sought to reduce
the number of runs by performing two RFE runs, one to find an
initial optimal maxFeatures1-feature subset, and another to
find the optimal time windows of the maxFeatures1-feature
subset, where maxFeatures1 can be any constant.

To achieve this, we first run RFE on all of the features,
computed with a single time window equal to the median
time window size from set of considered time windows.
The median was selected for initial feature filtering because
both short and long term patterns should be visible at this
resolution. After this initial round of feature selection, we
choose the maxFeatures1 optimal median-second time win-
dow features. We then add all other time windows corre-
sponding to these optimal features to the feature set, result-
ing in a new feature set with cardinality maxFeatures1 ×
NumberOfT imeWindows. We again use RFE to select for
the optimal feature set, and choose the feature subset which
yields the highest F1 score while having a cardinality of
less than maxFeatures2 features, where maxFeatures2 is
another pre-selected constant. This final feature subset contains
our optimized time-window features.

Using this method of chained RFE runs allows us
to reduce the total number of ML algorithm runs to
O(12 × SizeOfFeatureSet2) + O(12 × maxFeatures1 ×
NumberOfT imeWindows2), which is approximately an
order of magnitude smaller than the original runs that would
have been necessary with a single RFE Stage. This entire

process is repeated for each attack type, DOS, Probe, U2R,
and R2L, shown in Figure 1.

Decision Tree (DT) was used as the supervised learning
algorithm for RFE, due to its quick performance and better
initial F1 test results compared to the other algorithms con-
sidered. Table II shows our justification for choosing DT and
further discussion of this choice is in Section III. To avoid
biasing our feature selection process, we first split the dataset
into two parts, with both splits being used as the training set
and the test set once. This way, the feature selection process
could be performed on only the training set, and the selected
features would not be biased on the test set. Since each split
functions as both a training split and a test split in different
runs, we end up with two feature sets and F1 scores for each
attack type, one using the first split as the training and the
second split as the test and vice versa. Using DDoS as an
example, we refer to DDoS Split 1 as the DDoS where Split
1 is training and Split 2 is test, and DDoS Split 2 using Split
2 as training and Split 1 as test.

A further consideration is that our feature extraction process
separates individual seconds into samples, and since a single
attack occurs over multiple seconds, many contiguous second-
samples contain the same attack. This too is an issue for
inflating a classifier’s scores, since a split down the middle
of the dataset may split the same attack into both training
and test sets. For this reason, for each attack type, we chose
an index to split that did not separate an attack of that type
into both splits, but tried to still retain close to half of the
second-samples and half of the attacks within each split. This
means that each attack type had a dataset that had slightly
different splits. Our method for splitting is in essence 2-fold
cross-validation, where the splits are manually determined.

Once we have split the dataset, we use RFE on the training
split to select for features. Since only half of a dataset is
used for feature selection, we employ standard K-fold cross-
validation on the current training split, with K = 5 folds.
Using 5-fold cross-validation, we divide our training split in
5 equal parts, and use 4 parts for model training and 1 part
for testing. This process is repeated 5 times, each time with
a different section of the split used for testing. Since every
section of the training split is in the 5-fold testing section
exactly once, we collect the scores from all 5 training sections
and compare the predicted labels to the actual labels to gather
an F1 score, which we use to rank our feature sets.

Even though with this method the same attack may be
contained in different folds, we justify not splitting the folds
manually for the feature selections process because the F1
scores we collect here are not used to describe the effectiveness
of our model; they are simply a ranking metric for comparing
feature subsets, and all of the feature subsets will have
identical folds to the feature sets they are compared with.

III. RESULTS

We present results of our experimentation with the RFE time
window optimization framework using the KDD 1999 Dataset

[22]. First, we give a brief description of the dataset. Then,
we demonstrate how our technique affects classification.

A. Dataset Description

We used the KDD 1999 dataset [22] packet captures.
Although there has been controversy in using this dataset [23],
it is a well labeled, complete set of packet and host data. In
addition, there is a large amount of related work on feature
selection for this specific dataset as we review in Section V.
This offers an opportunity to compare other methods of feature
selection to our work that introduces time windows as part of
creating and selecting features.

We specifically chose to use packet captures (pcap) since
host configurations and technologies change more over time
than pcap data, which has had the same format and is less
architecture or technology dependent. Obviously, there has
been an increase in network bandwidth and speeds. However,
the features derived from pcap data, such as packet size, inter-
arrival rate, and payload, have been unchanged.

Normal traffic, such as internet browsing and email ex-
change, is included in the data and it is interleaved with
four types of attacks: Probe, DDoS, U2R, and R2L. The four
types of attacks encompass the majority of modern adversarial
techniques and are briefly described below:

• Distributed Denial of Service (DDoS): An attack in-
tended to deprive users from legitimate services. It is
often distributed, i.e., executed by a set of devices (botnet)
coordinated by Command Control (C2) infrastructure.

• Probe or Scanning: A passive attack intended to gather
information about exposed, vulnerable services and hosts.

• Remote to Local (R2L): An active attack intended to
gain local user access when the adversary is remotely
located.

• User to Root (U2R): An active attack that escalates the
privilege to root / administrator from simple user access.
It usually precedes a U2R attack.

The preselected features that refer to packet capture files
are presented in Table I. Initially, we considered a set of
sixty data features from [24], that ranged from protocol and
flag signatures, to packet size, inter-arrival rate, source and
destination ports, and packet error rates. However, we did not
include the whole set of features due to degrading processing
time. RFE requires O(N2) number of ML algorithm runs,
where N is affected by the size of the feature set and the
number of time windows, i.e., N = SizeOfFeatureSet ×
NumberOfT imeWindows. Thus, we limited the size of
the feature set to a lower number of features to avoid large
computation time. We have deployed a mix of statistically
calculated features, such as mean and coefficient of variation,
as well as discrete features, such as the count of a protocol,
service, or flag. Note that these features are generic and not
dataset-specific.

We have used the last two weeks of data, which amount to
ten days of eight-hour work day packet network captures. The
attack data comprises 61% of the total packet captures.

TABLE I: Randomly selected features calculated over n sec-
onds. “#” indicates “number of”

Feature Description
SYNCount # packets with SYN flags
MeanNumberOfPackets Mean number of packets per second
SYNBool # previous n seconds

containing at least 1 SYN flag
NumberOfPackets Total number of packets
UniqProtcols # unique protocols
UniqSrcIPs # unique source IP addresses
UniqDestIPs # unique destination IP addresses
Count DNS, TCP, ARP, # packets using specific protocol
ICMP, UDP, FTP, or service (10 different features)
HTTP, RST, TELNET
SSH
CCodeCount # packets with *.c file extension

in payload
EXECodeCount # packets with *.exe file extension

in payload
CorJSCount # packets containing markers of c or

javascript code
ThirdMNumberPackets Third Moment number of packets

per second
MeanPacketSize Mean size of all packets
CVPacketSize Coefficient of variation of size

of all packets
ThirdMPacketSize Third moment of size

of all packets
HTTPorFTPandEXE # packets using either HTTP or FTP,

containing a *.exe file extension
in payload

HTTPandMalformed # malformed packets using HTTP,
FTPandC # packets containing FTP

and a *.c file extension in payload

B. Experimentation Results

We present runtime performance results of different ma-
chine learning algorithms in Table II. Even though our
framework is not algorithm specific, Table II shows a good
justification for the usage of Decision Trees regarding run
time and preliminary F1 score. The F1 scores for DTs were
the highest, although Support Vector Machine (SVM) and K-
Nearest Neighbors (KNN) could also be used with proper
parameter tuning. These results were gathered from DDoS
split 1 using all of the 8-second time window features to fit
the model, with DDoS split 2 as the test set. The three distinct
sample lengths were chosen to see if relative performance
changed with number of samples. The 71,348 samples is about
half of the dataset, which is close to the amount of samples
that a single split would consist of.

TABLE II: Performance in seconds of different machine
learning algorithms for varying numbers of samples: 500,
5,000, and half of total dataset samples (71,348 samples). F1
score calculated for 71,348 samples.

ML Algorithm 500 5,000 71,348 F1
DT 0.05 0.08 1.63 0.18
K-NN 0.44 0.62 1.75 0.00
SVM 2.99 31.22 3410.53 0.06
NN 1.01 3.34 36.39 0.07

Our aim in this work is to demonstrate a proof of concept
that using multiple time windows for feature creation has value

for classification. Thus, we attempt to show improvement
when the element of time is a variable for attack feature
creation and selection. To this end, the results presented below
test the following hypotheses:

1) A global time window is less effective compared to
multiple time windows for feature creation: In this case,
our goal is to show results for feature selection and
creation that demonstrate noticeable improvement for
the classification of attacks.

2) The more information, the better: If a time window is
large, i.e., there are more data for feature generation, the
classification decision will give higher F1 scores. How-
ever, more features do not obviate more information, i.e.,
some features may have overlapping, redundant data, not
needed for classification.

3) The attack size affects the window size: If an attack has
long duration, long time windows improve its classifica-
tion and equivalently for short-duration attacks, features
that are generated with shorter time windows are more
beneficial.

To demonstrate the first hypothesis, we have constructed a
Table with the F1 scores calculated after the first stage of our
algorithm, i.e., after RFE with only one specific time window
duration of 8 secs, and the F1 scores after using RFE for time
window optimization. Table III shows these F1 scores and the
percentage difference before and after optimizing with more
than one global time window size for feature creation. These
scores are the average F1 scores from each of the two splits for
each attack. Even though the F1 scores are not high, there is a
noticeable improvement after optimizing and creating features
with multiple time window granularities that varies from 11%
- 47%.

TABLE III: F1 scores before and after time window optimiza-
tion. RFE Stage 1: RFE with only one specific time window
duration, i.e., 8 secs. RFE Stage 2: F1 scores after using RFE
for time window optimization.

Attack Type RFE Stage 1 RFE Stage 2 % Diff.
DDDoS 0.166 0.243 46%
Probe 0.108 0.120 11%
U2R 0.192 0.229 20%
R2L 0.090 0.132 47%

Regarding the second hypothesis, Figure 2 demonstrates that
features tend to have overlapping information, therefore more
is not always better. In this Figure, we have shown the F1
scores of RFE Stage 2 iterations versus the number of features.
Figure 2 parts a and b correspond to the two ways that we
trained our model by using the first (Split 1) or second half
(Split 2) of the dataset for training. Note that the F1 values in
this figure are considerably higher than in Table III. This is
justified because these F1 scores were used during the training
process, which used the standard K-fold method of training
and testing our model, which left some attacks in the training
and testing sets, and also selected optimal features for the
training set. For these reasons, it is not surprising that the F1
scores are higher for the feature selection process.

(a)

(b)

Fig. 2: F1 score vs number of features as was measure during
the second RFE, starting with 41 time window features and
reducing to the optimal windows. (a) F1 scores were calculated
using the first half of the dataset as training/validation and the
second half for testing, (b) F1 scores were calculated using
the second half of the dataset as training/validation and the
first half for testing.

For each attack type, we calculated the Pearson correlation
between the attack length and the True Positive Rate (TPR)
of the seconds within that attack. The correlation values for
each attack type were: DDoS: 0.51, R2L: 0.14, U2R: 0.02,
Probe: -0.41. Figure 3 supports our last hypothesis, i.e., there
is correlation between the size of attack and size of time
windows used for feature generation. This Figure shows the
TPR for all four types of attacks vs the attack length. The
TPR in this scenario is defined as the TPR within all of the
seconds in an individual attack; this way, each attack has its
own TPR, which is useful for analysis. DDoS and R2L have
a noticeable increase in correlation of attack length with TPR.
DDoS specifically has a correlation of 0.51, the highest of
the four attack types. Notably, DDoS also has the highest
final F1 score, and the second highest F1 percentage change
when optimizing the time windows with the second RFE on
the time window features. Both DDoS and R2L may expand
to multiple sessions. For DDoS these sessions may try to
overwhelm the server for a long period of time, and for R2L
they may include brute force password attacks to gain access
to a local machine. A unexpected result is that Probe attacks
demonstrate a negative correlation between attack length and
TPR. This may be justified by stealthy scans or short bursts
of scans to avoid detection.

Figure 4 shows the False Positive Rates (FPR) for each

(a) DDoS (b) Probe

(c) R2L (d) U2R

Fig. 3: Pearson Correlation of Attack Length versus True Positive Rate

Fig. 4: False Positive Rates (FPR) By Attack Type

attack type across Split 1, Split 2, and the average across both
runs. DDoS has an average FPR of 4.0%, less than half the
amount of the next closest attack type R2L, which has a FPR
of 9.5%. Probe has the third highest FPR of the attack types
at 12.9%, and U2R has the highest FPR at 21.3%.

In Figure 5 we demonstrate the effect of attack length
thresholds on ”detection rate”. Here we define a detected
attack as one where the TPR within the attack is higher than
the baseline rate of positive predictions on the test set. The
graph shows a threshold of attack lengths in seconds on the
x-axis. If an attack is the same size or longer than the a
given value on the x-axis, it is considered in the percentage of
detection rate. The y-axis shows the percentage of attacks that
are detected, i.e., have TPR higher than the baseline. A higher

Fig. 5: Attack Length vs Classification as defined by percent-
age of attacks that have TPR higher than the baseline.

value on the y-axis for a given attack length threshold implies
that attacks of that length are more likely to be detected.
DDoS, R2L, and Probe all have detection rates of 0 for the
longest attacks, but otherwise have a generally positive trend,
where as the length of attack increases, so does the detection
rate. For example, the two longest DDoS attacks were not
detected, ending with a negative trend, if these two attacks had
been removed, there would have been a consistently positive
trend. U2R does have a trend for attack detection rate to
increase as attack size increases.

This is an intuitive result since time window-based features

seem to do better for attacks that take place over more time.
Table IV aims to give insights related to the feature selection

and time windows that were chosen by our framework. Table
IV shows the optimal features for both splits after the two
stages of our framework feature selection and creation using
multiple time windows. It can be seen that the number of
optimal features for each attack in Split 1 correspond to
the highest points on Figure 2a, and the number of optimal
features for each attack in Split 2 correspond to the highest
points on Figure 2b for that attack when there are less than ten
features left. Note that several features related to the signature
of a specific attack repeat with different granularities, such as
TCPCount for U2R Split 2, where 1 second, 8 second, and
60 second windows were all selected. This suggests that a
single feature calculated over different lengths of time can be
useful in combination, as well as suggesting that different time
windows should be considered as individual features in their
own right. Many of the selected features calculated use known
attack signatures for that attack type, such as SYNBool for
DDoS, where many types of DDoS attacks, such as the SYN
flood attack, where a high volume of packets containing a SYN
flags are sent to a victim. Another example is ARPCount for
Probe attacks, many of which may send several ARP requests
looking at random IP addresses.

IV. DISCUSSION

Even though our feature selection and generation framework
is generic and can be used with any discrete and continuous
feature set, it may not be ideal for fast paced changes in
a real-time environment. The runtime of the algorithm is
considerable and would preferably be completed off-line. Then
an optimal feature set can be used as input to a real time IDS.

The F1 scores that were reported are low for attack classifi-
cation, however, measuring the success of this classification
task requires considering both the F1 score and the FPR.
For this task, the F1 score alone is an insufficient measure
of classification success because the F1 score is a function
of precision and True Positive Rate (TPR). Since we are
classifying seconds, and many seconds may compose an
attack, a successful detection does not necessarily require a
high TPR of all of the seconds of an attack. In a real scenario,
an IDS would seek to classify attacks based on network flows,
not seconds, so a given length of network traffic with a higher
than average TPR may be concern enough to raise a flag, and a
TPR of less than 1 could be effective at doing this. Considering
the F1 score alongside the FPR provides a more robust idea
of classification success.

When considering the two scores, clearly the most effective
classification was for DDoS attacks, particularly those of
substantial length. Not only does DDoS have the highest F1
Score, but it also has the lowest FPR by a large margin,
with an FPR of about 4% on average. DDoS also has the
strongest positive correlation between attack length and TPR
(Figure 3), with a correlation of 0.51. DDoS attacks also had
the second highest change in F1 between the initial feature
selection round and the window optimization round (Table

III), as well as a generally positive trend between the attack
length threshold and detection rate (Figure 5). This is a result
that matches intuition, since many DDoS attacks may consist
of various methods of sending high amounts of consistent
types of network traffic over long periods of time. Attacks
of this type intuitively seem especially well-suited to using
time-window features, and the results show that the optimal
time window features are most effective for these types.

Unexpectedly, our method of finding the optimal time
window features seems to have been rather ineffective for
detecting Probe type attacks with this dataset. Not only does
Probe have the lowest final F1 score (Table III) but it has a
negative correlation between attack length and TPR (Figure
3).

In general, longer time windows were selected as more
useful than shorter time windows. This may be a simple
result of the fact that many of the lengths of the attacks
were significantly longer than our longest time window, 60
seconds. This selection of longer time windows is not too
surprising of a result; they are less sensitive to short-term
fluctuations of normal traffic that may limit the usefulness of
some of the smaller time windows. Eventually time windows
could get so large that they become insensitive to even the
malicious fluctuations in traffic. Further investigation may
use longer windows to find lengths of time that become too
long to be effective. Since the longer time windows were
generally chosen as the most effective already, starting with
even longer time windows could positively affect classification
as well. Further exploration of machine learning algorithms
and feature selection methods will enhance the performance
of classification. In addition, a more sophisticated set of initial
features where domain knowledge is used, will result to better
classification performance.

Our experimentation is limited to a dataset that is old and
not considerably large. We did use only packet captures that
have generic network characteristics; however a more current
dataset can be used [25]. Experimentation with additional
datasets is required to generalize our framework for time win-
dow feature creation. Furthermore, longer attacks, such as long
duration botnets and APTs, will reveal additional information
about the importance of calibrating feature calculations over
time.

V. RELATED WORK

The work related to our study is divided in two categories:
feature selection techniques and attack classification. There
are large bodies of work related to both categories. We have
included the most relevant to our work in this section.

A. Feature selection for attack classification

The authors in [26] provide one of the earliest studies related
to our work. They use information gain and decision trees
to specify the relevance of a feature in attack classification.
Flexible Neural Trees (FNTs) are deployed by Chen et. al. [27]
to select features and classify attacks. The authors develop a
genetic algorithm to select the optimal features. They reduce

TABLE IV: Optimal features selected by our framework. The format of features is: < TypeOfFeature >< WindowSize >.

Attack Optimal Features Split 1 Optimal Features Split 2
DDoS MeanPacketSize16, SYNBoolean60, TCPCount60, SYNBoolean60, ThirdMomentPacketSize60, TelnetCount60,

SYNBoolean32, DNSCount16, TCPCount16, TCPCount60, DNSCount8, TCPCount16, DNSCount32,
DNSCount8, ICMPCount60, TCPCount2, ThirdMomentNumberOfPackets60, TCPCount8, TelnetCount4
SYNCount16

Probe ARPCount8, UDPCount60, ARPCount16, DNSCount60 ThirdMomentNumberOfPackets32 MeanPacketSize60
ARPCount60 MeanPacketSize32, RSTCount60, TelnetCount32, UniqSrcIps32,

ThirdMomentNumberOfPackets60, UniqSrcIps60, MeanPacketSize16
R2L CVPacketSize60, UniqSrcIps32, RSTCount6 DNSCount60, SSHCount60, SYNCount60, UniqSrcIps60,

RSTCount60, RSTCount32, NumberOfPackets
U2R ThirdMomentPacketSize60 SSHCount60, CorJavaScriptCount60, RSTCount60,

ThirdMomentNumberOfPackets60, TCPCount60, CorJavaScriptCount32,
ThirdMomentNumberOfPackets16, SSHCount32, TCPCount1, TCPCount8

the number features for the KDD dataset from 41 to 5, and
their method classifies DoS and U2R attacks optimally.

Stein et. al. [28] use genetic algorithms to reduce the number
of features, then deploy decision trees for classification and
achieve better accuracy with less than the 41 prevalent fea-
tures of the KDD 1999 dataset. Directed Bayesian Networks
(BN) are used to find the minimal amount of features that
maximizes performance as presented by Chebrolu et. al. [8].
The authors use Classification and Regression Trees based
on binary recursive partitioning for feature deduction. Then
they use an ensemble based intrusion detection system present
results where they manage to reduce the feature dimensions
with high performance. Mutual Information (MI) that employs
entropy to eliminate overlapping features is studied by Amiri
et. al. [29]. The authors use ROC curves and performance
results to demonstrate the accuracy of the subset of features
selected by three algorithms: Modified MI, Correlation, and
Forward Feature Selection (FFS). Ambusaidi et. al. [30] use
Mutual Information in a filter based algorithm for feature
selection. The authors examine two additional datasets besides
the KDD’99, i.e., NSL-KDD and Kyoto 2006. They create an
IDS based on Least Squares SVM and their feature selection
filter algorithm, that achieves better accuracy and performance
compared to state-of-the-art methods.

Ganapathy et. al. [13] conduct an extensive survey on fea-
ture selection techniques and classification algorithms based
on the KDD 1999 dataset. They review the following feature
selection techniques: gradual feature removal (filter), mutual
information techniques based on entropy, and Conditional
Random Field (CRF), which use a layered approach of
different features per attack group combined with domain
knowledge and wrapper techniques. They then compare neural
networks, linear programming, SVMs, and the layered ap-
proach for classification. They conclude with a new algorithm
that uses information gain ratio for feature selection and multi-
class SVM for classification and performs well regarding
accuracy of classifying DoS and Probe attacks using the
KDD’99 dataset.

In all the above related publications, the time window used
to calculate the features is not discussed or used as a criterion
to create new features. In addition, there is no study on how
time duration of feature calculation affects the accuracy of
attack classification.

B. Attack Classification

The most well known rule based IDSs such as Snort [6],
Bro [31], and Suricata [32], use pre-set constant window sizes
for attack signature calculations. Although these methods may
partially address the question of how much history is relevant
for an optimal global window, the current approaches fail to
recognize the naturally varying time scales associated with
diverse attacks and features.

Lee et. al. [33] present two algorithms that recognize
anomalies and known attacks, i.e., the association rules al-
gorithm and the frequent episodes algorithm. Their work is
of the earliest in real-time detection of known and unknown
attacks. Experimentation with SVMs and Artificial Neural
Networks (ANNs) is presented by Sung et. al. [34]. The
authors combine attack classification and feature ranking.
First, they rank features based on performance metrics that
they have defined, and then they use SVMs with ranked
features and compare their results to ANNs. They conclude
that SVMs outperform ANNs in accuracy and performance.
Zhang et. al. [35] deploy single class of on-line SVMs in
an effort to train and use them for classification of attack
data in real-time. Their results are promising for improved
classification accuracy without sacrificing performance. A
comprehensive survey on intrusion detection using machine
learning is presented by Tsai et. al. [36]. In this survey, well
known algorithms such as k-Nearest Neighbor, SVMs, ANNs,
Self-Organizing maps, Decision Trees, Naive Bayes, Genetic
Algorithms, and Fuzzy Logic are reviewed as they have been
used in intrusion detection.

All the above related literature demonstrate the importance
of dimensionality reduction for intrusion detection and attack
classification. As we have demonstrated in our study, it is
important to consider time since it affects the information of
a feature and the accuracy of classification.

VI. CONCLUSIONS

We have presented a framework to create and select features
based on variable time window durations. Our feature selection
techniques are used for attack classification for general types
of attacks such as DDoS, Probe, R2L, and U2R. The novelty of
our framework is the emphasis on time for feature generation,
an element that has not been adequately explored in the area of
attack classification and intrusion detection. The initial results

are promising, showing 11%-47% improvement in F1 scores
when multiple time windows are used for feature generation.

This study raises several interesting questions for future
research. First, can we optimize time windows for real-time
intrusion detection? Another question is whether some specific
features benefit more than others when shorter or longer time
windows are used for their calculation. There is an additional
variable, the window stride, that is also worth exploring. If
there is low information overlap, i.e., larger window stride,
how does this affect classification and our feature generation
framework? Finally, the trade-off of frequent versus infrequent
alerts needs to be explored for even larger and longer duration
attacks, such as Advanced Persistent Threats.

VII. ACKNOWLEDGMENTS

We would like to acknowledge the support provided by
the US National Science Foundation under Award No. DUE-
1700254.

REFERENCES

[1] M. Uma and G. Padmavathi, “A survey on various cyber attacks and
their classification,” International Journal of Network Security, vol. 15,
no. 5, pp. 390–396, 2013.

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai botnet,”
in 26th USENIX Security Symposium (USENIX Security 17). Vancouver,
BC: USENIX Association, 2017, pp. 1093–1110.

[3] A. C. Haury, “10 Of The Most Costly Computer Viruses Of All Time,”
shorturl.at/xHRU0.

[4] B. I. Koerner, “Inside the cyberattack that shocked the us government,”
shorturl.at/nxFO0.

[5] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16 – 24, 2013.

[6] M. Roesch, “Snort - lightweight intrusion detection for networks,” in
Proceedings of the 13th USENIX Conference on System Administration,
ser. LISA ’99, 1999, pp. 229–238.

[7] P. Garcı́a-Teodoro, J. Dı́az-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Comput. Secur., vol. 28, no. 1-2, pp. 18–28,
2009.

[8] J. P. T. Srilatha Chebrolu, Ajith Abrahama, “Feature deduction and
ensemble design of intrusion detection systems,” Computers & Security,
vol. 24, no. 4, pp. 295 – 307, 2005.

[9] L. Yu and H. Liu, “Efficient feature selection via analysis of relevance
and redundancy,” Journal of machine learning research, vol. 5, no. Oct,
pp. 1205–1224, 2004.

[10] I. Guyon and A. Elisseeff, “An introduction of variable and feature
selection,” J. Machine Learning Research Special Issue on Variable and
Feature Selection, vol. 3, pp. 1157 – 1182, 01 2003.

[11] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[12] A. KumarShrivas and A. Kumar Dewangan, “An Ensemble Model for
Classification of Attacks with Feature Selection based on KDD99 and
NSL-KDD Data Set,” International Journal of Computer Applications,
vol. 99, no. 15, pp. 8–13, Aug. 2014.

[13] S. Ganapathy, K. Kulothungan, S. Muthurajkumar, M. Vijayalakshmi,
P. Yogesh, and A. Kannan, “Intelligent feature selection and classifica-
tion techniques for intrusion detection in networks: a survey,” EURASIP
Journal on Wireless Communications and Networking, vol. 2013, no. 1,
p. 271, Nov 2013.

[14] S. Mallat, A wavelet tour of signal processing. Elsevier, 1999.

[15] C. W. Gear, J. M. Hyman, P. G. Kevrekidid, I. G. Kevrekidis, O. Run-
borg, and C. Theodoropoulos, “Equation-free, coarse-grained multiscale
computation: Enabling mocroscopic simulators to perform system-level
analysis,” Communications in Mathematical Sciences, vol. 1, no. 4, pp.
715–762, 2003.

[16] I. G. Kevrekidis, C. W. Gear, and G. Hummer, “Equation-free: The
computer-aided analysis of complex multiscale systems,” AIChE Jour-
nal, vol. 50, no. 7, pp. 1346–1355, 2004.

[17] A. Graves, “Supervised sequence labelling,” in Supervised sequence
labelling with recurrent neural networks. Springer, 2012, pp. 5–13.

[18] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning
representations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, p. 1, 1988.

[19] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and
C. Wang, “Machine learning and deep learning methods for cybersecu-
rity,” IEEE Access, vol. 6, pp. 35 365–35 381, 2018.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[21] C. Wilson, “Github repository (code and data),” https://github.com/
CybersecurityXLab/ids svm slidingwindow.

[22] T. U. K. Archive. (1999) KDD cup 1999 data. http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html.

[23] J. McHugh, “Testing intrusion detection systems: A critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by
lincoln laboratory,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 4, pp. 262–
294, Nov. 2000.

[24] J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999 darpa off-
line intrusion detection evaluation,” Computer Networks, vol. 34, pp.
579–595, 2000.

[25] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),” in
2015 Military Communications and Information Systems Conference
(MilCIS), Nov 2015, pp. 1–6.

[26] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “Selecting
features for intrusion detection: A feature relevance analysis on kdd 99,”
in PST, 2005.

[27] Y. Chen, A. Abraham, and B. Yang, “Feature selection and classification
using flexible neural tree,” Neurocomputing, vol. 70, pp. 305–313, 12
2006.

[28] G. Stein, B. Chen, A. S. Wu, and K. A. Hua, “Decision tree classifier
for network intrusion detection with ga-based feature selection,” in
Proceedings of the 43rd Annual Southeast Regional Conference - Volume
2, ser. ACM-SE 43, 2005, pp. 136–141.

[29] F. Amiri, M. Rezaei Yousefi, C. Lucas, A. Shakery, and N. Yazdani,
“Mutual information-based feature selection for intrusion detection
systems,” J. Netw. Comput. Appl., vol. 34, no. 4, pp. 1184–1199, July
2011.

[30] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an intrusion
detection system using a filter-based feature selection algorithm,” IEEE
Transactions on Computers, vol. 65, no. 10, pp. 2986–2998, Oct 2016.

[31] V. Paxson, “Bro: A system for detecting network intruders in real-
time.” San Antonio, Texas: Proceedings of the 7th USENIX Security
Symposium.

[32] “Suricata Open Source IDS / IPS / NSM engine,” https://suricata-ids.
org/.

[33] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion de-
tection,” in Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7, ser. SSYM’98, 1998.

[34] A. H. Sung and S. Mukkamala, “Identifying important features for
intrusion detection using support vector machines and neural networks,”
in Proceedings of the 2003 Symposium on Applications and the
Internet, ser. SAINT ’03. Washington, DC, USA: IEEE Computer
Society, 2003, pp. 209–. [Online]. Available: http://dl.acm.org/citation.
cfm?id=827273.829224

[35] Z. Zhang and H. Shen, “Application of online-training svms for real-time
intrusion detection with different considerations,” Computer Communi-
cations, vol. 28, no. 12, pp. 1428 – 1442, 2005.

[36] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection by
machine learning: A review,” Expert Systems with Applications, vol. 36,
no. 10, pp. 11 994 – 12 000, 2009.

