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Abstract—Internet of Things (IoT) devices are ubiquitous,
with web cameras, smart refrigerators, and digital assistants
appearing in homes, offices, and public spaces. However, these
devices are lacking in security measures due to their low
time to market and insufficient funding for security research
and development. In order to improve the security of IoTs,
we have defined novel security metrics based on generic IoT
characteristics. Furthermore, we have developed automation for
experimentation with IoT devices that results to repeatable and
reproducible calculations of security metrics within a realistic
IoT testbed. Our results demonstrate that repeatable IoT security
measurements are feasible with automation. They prove quan-
titatively intuitive hypotheses. For example, an large number of
inbound / outbound network connections contributes to higher
probability of compromise or measuring password strength leads
to a robust estimation of IoT security.

Index Terms—IoT, Security Metrics, Automation.

I. INTRODUCTION

The Internet of Things (IoT) is a rapidly growing sector of
the digital world consisting of internet-connected devices. To
keep up with the rapid growth, many IoT devices are being
produced as quickly and as cheaply as possible, which raises
serious concerns for security. In order to secure these IoT
devices, a means of evaluation needs to exist specifically for
assessing their security.

There are several challenges in evaluating security and
specifically security of IoT devices. We list two of these
challenges below:

1) How can we measure something that does not exist?
Pfleeger et. al. in [1] define security evaluation as the
measurement of the absence of an attribute. To this end,
we propose a set of novel metrics that are based on
known device behavior, not abstract, unknown concepts,
such as the adversary’s behavior or zero day attacks.

2) Quantified security is a false hypothesis.
Verendel [2] has an extensive study regarding security
evaluation techniques. The missing link in quantitative
security work are repeatable, automated experiments
that verify operational metrics’ validity and realism. We
develop automation to conduct repeatable experiments
to evaluate IoT security metrics and a realistic testbed
for experimentation.

To our knowledge, one of the few attempts to evaluate
IoT security with quantitative metrics is presented in [3].
The authors evaluate End to End secure key management
for health devices using third parties to handle the keys.

However, this work focuses only on the specialized area of
key management IoT security evaluation. In his survey on
IoT security, Kouicem identifies two design approaches to
securing IoT devices, unification and integration [4]. Babar
et. al. [5] propose a general threat model IoT devices whereas
Yin et. al. take a different approach analyzing attacks in the
wild with an IoT Honeypot [6]. Acar et. al. [7] discover
original IoT Web based attacks that can find IoTs even if
they are behind a NAT, through studying their web portal
responses. One of the most standardized efforts to evaluate
security is the Common Vulnerability Scoring System (CVSS)
[8]. Even though the NIST CVSS is an industry standard,
there is opportunity to introduce additional metrics that are
continuous and more granular than the LMH scale metrics.
Abraham et. al. [9] introduce a non-homogeneous Markov
model for security predictions, created based on: attack graphs,
CVSS, Vulnerability lifetime and Frei’s model to integrate
time in the exploitability parameter.

Our work differs from previous works due to its focus
on generic IoT security principles, not specific attacks. Our
contributions are summarized below:

• Development of novel security metrics for IoT: we pro-
pose novel security metrics for IoT devices based on their
fundamental characteristics and security principles. Our
metrics are objective, repeatable, and reproducible.

• Experimental evaluation of metrics: we evaluate the
metrics and show that they can be quantified and lead
conclusions about the likelihood of attacks.

• Automation for IoT security measurements: because of
the limited interfaces and APIs offered to access IoTs,
automation and experimentation is challenging. We create
novel automation that conducts repeatable experiments
and collects security measurements.

II. METHODOLOGY

In this Section, we first specify the process to extract met-
rics based on fundamental device characteristics and security
principles. Then we analyze in detail the metrics developed
and evaluated in this paper. Finally, we describe the testbed
used for experimental evaluation of IoT security metrics.

A. Development of IoT Security Metrics

In order to define IoT security metrics, we used the follow-
ing criteria:



Security Metric IoT Feature CIANA Principle
Password Strength Communication C

# incoming connections Communication C, Availability
# of outgoing connections Communication I

# of active services Purpose C, Authenticity
% of successful attacks Communication, C, I, A, N, A

Purpose, Mobility & Safety
% historically vulnerable Communication, C, I, A, N, A

Purpose, Mobility & Safety
TABLE I

IOT SECURITY METRICS CORRESPONDING TO DEVICE CHARACTERISTICS
AND CIANA PRINCIPLES.

1) IoT features: IoT devices represent a diverse ecosystem,
therefore standardization of their access interfaces, soft-
ware, and hardware features, is challenging. We based
our metrics on the IoT taxonomy presented in [10].
This verifiable taxonomy defines the following shared
features between IoT devices: communication, mobility,
and purpose. We based our metrics on these common
characteristics.

2) Security pillars: The fundamental security principles of
Confidentiality, Integrity, Availability, Non-Repudiation,
and Authenticity (CIANA) offer a simple yet robust
base for defining security metrics. In addition, safety
is another consideration for IoT devices, since they may
affect humans physically and cause harm if operated by
a malicious actor.

Table I shows the defined security metrics in combination with
the IoT features and security principles that inspired these.
Note that the metrics are not indicators of compromise, on the
contrary they are means to predict a potential compromise.
For example, if the password strength is low, there is a higher
likelihood for an IoT portal or SSH service to be compromised.
This assumption helps us relax the strict rules of absolute met-
rics, while maintaining the rigorousness of evaluating security
with objective, reproducible, and quantitative measurements.

Next, we analyze each metric in Table I:
1) Password Strength: A large number of IoT devices

operate with a default username and password combination
[11]. Furthermore, passwords may be hard-coded and thus it
is impossible to harden these.

In order to evaluate the strength of a password, we use
password’s information as it is calculated by information
entropy [12] I = − log2 probi, where I is the information
and probi is the probability of the event i to occur. For the
calculations of the value of a password information, an event
may either be the occurrence of a word, or letter, or number,
or character. The higher the value of I, the more complex and
secure the password is.

To evaluate password complexity we need to consider if it
can be successfully cracked via a brute force, a dictionary,
or rainbow table attack. To this end, we combine statistical
password guessability metrics as described in [13] with infor-
mation entropy a simple formula to calculate the strength of

Fig. 1. Automation workflow where the IoT Commander initiates requests,
triggers events, and collects data. Messages are marked with numbers.

an IoT password introducing the following metric:

Password Strength =
I

Password Guessability
, (1)

where I is the information entropy defined above and
Password Guessability is a factor that indicates how easy
it is to brute force a password given a specific algo-
rithm. For simplicity, since a large number of IoT devices
have hard-coded default passwords, we specify the ratio:
Password Guessability = 1

total guesses . This is an intuitive
metric that is not affected by the algorithm used to guess the
password and takes in account the worst case scenario of the
password being at the end of a dictionary or file.

2) Number of Inbound and Outbound Connections: Incom-
ing connections to network devices provide insight regarding
security for the following reasons: i. if these are unscheduled
and unsolicited, they increase the probability of an attack
through reconnaissance, i.e., scanning, or password brute forc-
ing, ii. increased number of incoming connections may conceal
a malicious data transfer attempt or a Denial of Service. Simi-
larly, a high number of outgoing connections may demonstrate
potential for data ex filtration or data tampering. Both these
metrics are derived by the communications characteristic of
IoT devices.

These two metrics need to be interpreted within a specific
context using the following criteria: i. the incoming connection
is unsolicited or from unknown sources, ii. the inter-arrival
rate is high, and iii. the number of incoming connection is
statistically deviant from a regular traffic baseline.

3) Number of Active Services: IoTs often use open ports to
expose key services for their functionality. Open ports increase
the attack surface especially if they are open persistently. Thus,
this metric considers a high number of open ports may increase
the probability for IoT security breaches. This metric is derived
from the purpose of IoT devices, since this correlates to the
services that they are running.

4) Percentage of successful attacks: In order to define an
objective number of successful attacks metric, we need to
provide the definition of a successful attack. For an attack to be
successful, it has to have a noticeable impact on the IoT device



with regards to the CIANA security pillars. The most obvious
indication of a successful attack is the inability of a device to
operate during or after the attack, i.e., the device availability
is affected. Another implication of a successful attack may
affect the physical safety since devices include actuators, such
as robotic arms, smart cars, etc. Finally, an attack may succeed
in stealing or tampering with information, i.e., confidentiality
and integrity may be affected by a successful attack.

The metric that we propose is the percentage of successful
attacks:

% successful attacks =
number of successful attacks

total number of attacks
,

(2)
that can be calculated via penetration testing or running a
standardized benchmark of attacks against IoT devices. This
metric is correlated to the purpose of the device and affects
all security pillars. The higher the percentage, the higher the
probability of a successful attack from an adversary.

In the following Sections we discuss our methodology to
evaluate and present a proof of concepts of calculating these
metrics with automated software calls in a local testbed.

B. Automation Design

Manually operating IoT devices to extract repeatable secu-
rity metrics can be a challenging task. To this end, we have
designed automation to calculate baselines of normal IoT de-
vice operations and attacks with goal to evaluate the proposed
metrics. The automation leverages existing Application Pro-
gramming Interfaces (APIs) and python’s OS library in order
to run commands on devices without user interaction. The
current automation targets home IoT devices and is divided
into modules, each tasked with performing a single operation
on the targeted device. These modules were combined into
four scenarios to mimic real IoT usage: “wake up”, “house
party”, “enterprise normal hours”, and “enterprise after hours”.
“Wake up” scenario mimics a typical routine for waking up by
turning on lights, playing music, and casting youtube videos
via chromecast. “House party” sets the lamp to perform a
strobe light effect while music is played, videos are played on
a smart tv, and the webcam is quickly checked. “Enterprise
normal hours” and “Enterprise after hours” imitates functions
of a businsess such as turning lights on / off or checking
cameras for security. The time intervals for each operation are
extracted from random poisson distribution to produce realistic
scenarios.

Automation was developed for the following attacks: Denial
of Service (DoS) attack against an IoT, port scan, brute force
password attack, and large ping initiated by an IoT that
hypothetically is part of a botnet. Denial of service attacks
against IoTs were implemented using hping31, scans were
implemented using nmap2, brute force password attacks used
hydra3. Figure 1 shows the design of our automation with all
the modules and interactions. A centralized ”IoT commander”

1https://linux.die.net/man/8/hping3
2https://nmap.org/
3https://tools.kali.org/password-attacks/hydra

acted as an orchestrator for initiating automation calls and
performing attacks. To initiate operations the commander
either logs in to IoT devices or performs API calls. The
commander also collects data and stores it in csv files for post
analysis. There is one module that controls webcameras by
establishing a remote telnet connection and sending commands
as well as receiving responses, a second module that plays
voice commands that control the digital assistant and extents
to a third module that triggers the smart TV. Finally, REST
API commands are sent through a module to the light bulb.

In order to test the vulnerabilities of IoT devices, we
constructed a testbed of IoTs on a private subnet. The reason
for this is to allow for thorough testing and experimentation
without corrupting the metrics. To achieve this, our testbed was
created by connecting a pfSense router to the local network
and attaching a Netgear to the pfSense machine to function as a
wireless access point for the bed. This simple setup combined
with orchestration results to a robust monitoring mechanism
for automated collection of metrics.

III. RESULTS

In this Section we describe the experimentation results and
the sample measurements that were taken using the testbed of
IoT home devices and automation.

A. Password Strength

We measure password strength within the testbed devices
by examining passwords that are entered either via mobile
application or web portal using Equation 1. As shown in Table
II, IoT devices have consistently weak default passwords, if
they even have one. The devices that have default passwords
are typically routers and webcams. When calculating the in-
formation of default passwords, we assume that the probability
of a common word is 1/2000, considering 2,000 common
English words, the probability of a letter is 1/26, and the
probability of a digit is 1/10. Table II shows the calculated
information entropy, guessability, and password strength of
default passwords for devices located in the IoT testbed.
Guessability varies, from 1/65, 000 if password is picked from
rare words, to an estimate of 1/100 if a password is one of the
most common default passwords found in IoT devices. There
are several lists that enumerate these common IoT passwords
[11]. The most complex password that belonged to the pfsense
router, scored considerably better than a 6 digit string of
numbers. Intuitively, this indicates that a small change from
a default password to a non-common word may improve the
security posture of a device dramatically.

B. Number of Incoming and Outgoing Connections

Figure 2 shows a breakdown of regularly occurring com-
munications under normal operation scenarios automated as
described in Section II. We have executed the scenarios five
times and averaged the metrics to demonstrate that they are
repeatable and reproducible. During these scenarios, outbound
UDP connections occur more frequently than either inbound or
outbound TCP connections. The outbound UDP connections



IoT Device Password Information Guessability Strength
Pfsense pfsense 20.37 1/65,000 1,324,050
Netgear password 10.97 1/2,000 21,940

Samsung 1234 13.29 1/100 1,329
webcam

Avacom portal 1234 13.29 1/100 1,329
Avacom telnet none 0 0 0

D-Link webcam 123456 19.93 1/100 1,993
TABLE II

INFORMATION ENTROPY AND PASSWORD STRENGTH CALCULATIONS FOR
IOT DEVICES IN TESTBED.

Fig. 2. Number of TCP and UDP connections for all normal operation
scenarios.

commonly originate from the Samsung webcam, the Google
Home, and the Google Chromecast. Across all scenarios, the
number of inbound UDP connections has been very low, equal
to one or zero. The number of outbound UDP connections can
be attributed to the various devices “calling home” to their
manufacturer or central server without an expectation of a
response. The lack of UDP inbound packets is due to this
lack of responses from devices calling home.

C. Number of Active Services

Table III shows the devices with their open ports and
protocols. As shown in the Table, all open ports that were
exposed in our testbed are using the TCP protocol. Note that
none of the well-known ports (0 to 1023) are in use.

Based on Table III, the highest risk device is the Amazon
Firestick with six open ports. The Google Home follows in
second place with three open ports. Within the scope of the
entire testbed, we present only the devices with consistently

IoT Device Exposed Ports: Service
Avacom webcamera 10554/TCP

Amazon firestick 8009/TCP, 8888/TCP, 37459/TCP,
42896/TCP, 55443/TCP, 60000/TCP

Google Home 8012/TCP, 8443/TCP, 9000/TCP
Chromecast 8009/TCP, 9000/TCP

TABLE III
OPEN PORTS AND THE SERVICES THAT ARE EXPOSED FOR IOT DEVICES IN

TESTBED.

open ports. The rest of the devices only opened ports on
demand.

D. Number of Successful Attacks

Our results indicate that the Avacom webcam was success-
fully attacked by both the DoS attack and the brute force
attack, with a noticeable delay occurring during the running
of both. Google Home and Echo are resilient to most attacks.
This resilience indicates that the home assistants are less of
a risk when attacked, due to transfer of computation to the
Google and Amazon cloud and minimal hardware. Scans were
successful when devices revealed open ports and these devices
can be seen in Table III. The robustness of this metric is
contingent on the number and types of attacks used and in
our case only a sample of attacks were applied.

IV. CONCLUSIONS

We have shown with automation and realistic experimenta-
tion that our metrics are easy to evaluate with reproducible,
repeatable experiments. Out metrics lead to intuitive results,
for example they demonstrate that some devices, such as home
assistants, are at low risk against attacks, but high risk of
being monitored by the device manufacturer. Our future work
includes generic automation for IoT security evaluation that
is based on APIs and network automation standards, such as
customizeable Ansible playbooks.
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